Publicações

Publicações oriundas de estudos executados por Discentes ou Docentes do PPGO, através do desenvolvimento de Dissertação de Mestrado [M], Tese de Doutorado [D], Pesquisa de Pós-Doutorado [PD], Colaboração Nacional [CN] ou Internacional [CI] .

2021

Azar et al. Source waters contribution to the tropical Atlantic central layer: New insights on the Indo-Atlantic exchanges, https://doi.org/10.1016/j.dsr.2020.103450, DSR-1. [M]

Carvalho et al. Phytoplankton Strengthen CO2 Uptake in the South Atlantic Ocean, https://doi.org/10.1016/j.pocean.2020.102476, PiO. [D]

Umbria-Salinas et al. Copper ecological risk assessment using DGT technique and PNEC: A case study in the Brazilian coast, https://doi.org/10.1016/j.jhazmat.2020.123918, JHM. [M]

 

2020

Abreu et al. Are antifouling residues a matter of concern in the largest South American port?, https://doi.org/10.1016/j.jhazmat.2020.122937, JHM. [D]

Aguiar et al. Freshwater forcing control on early-Holocene South American monsoon, https://doi.org/10.1016/j.quascirev.2020.106498, QSR. [D]

Antonio et al. Impact of Jetty Configuration Changes on the Hydrodynamics of the Subtropical Patos Lagoon Estuary, Brazil, https://doi.org/10.3390/w12113197, Water. [D]

Avelina et al. Contrasting dissolved organic carbon concentrations in the Bransfield Strait, Northern Antarctic Peninsula: insights into ENSO and SAM effects, https://doi.org/10.1016/j.jmarsys.2020.103457, JMS. [CN]

Brandão et al. Meroplankton community structure across oceanographic fronts along the South Brazil Shelf, https://doi.org/10.1016/j.jmarsys.2020.103361, JMS. [CN]

Bitencourt et al. Spatio-temporal variability of suspended sediment concentrations in a shallow and turbid lagoon, https://doi.org/10.1016/j.jmarsys.2020.103454, JMS. [M]

Bitencourt et al. The contribution of ENSO cycles to the salinity spatio-temporal variability in a bar-built microtidal estuary, https://doi.org/10.1016/j.rsma.2020.101496, RSMS. [M]

Bortolin et al. Reviewing sedimentological and hydrodynamic data of large shallow coastal lagoons for defining mud depocenters as environmental monitoring sites, https://doi.org/10.1016/j.sedgeo.2020.105782, SedGeo. [CN]

Bose et al. Os efeitos da elevação do nível do mar e do balanço sedimentar em um hotspot erosivo no litoral do Rio Grande do Sul, Brasil, https://doi.org/10.22456/1807-9806.108560, PesqGeo. [M]

Caetano et al. High-resolution spatial distribution of pCO2 in the coastal Southern Ocean in late spring, https://doi.org/10.1017/S0954102020000334, AntSci. [CN]

Calliari et al. Mud deposits at Cassino beach: role of dredging, https://doi.org/10.1007/s00367-019-00619-6, GeoMarLet. [CN]

Carvalho et al. When descriptive ecology meets physiology: a study in a South Atlantic rhodolith bed, https://doi.org/10.1017/S0025315420000284, JMBA-UK. [CN]

Costa et al. Dynamics of an intense diatom bloom in the Northern Antarctic Peninsula, February 2016, https://doi.org/10.1002/lno.11437, L&O. [CN]

de Figueiredo et al. Effects of closure depth changes on coastal response to sea level rise: Insights from model experiments in southern Brazil, https://doi.org/10.1016/j.geomorph.2019.106935, GeoMorph. [PD]

Dentzien-Dias et al. Coprolites from shallow marine deposits of the Nanjemoy Formation, Lower Eocene of Virginia, USA, https://doi.org/10.1111/let.12380, Lethaia. [CI]

de Souza et al. Effects of coastal lagoon water level on groundwater fluxes of nutrients to the coastal zone of southern Brazil, https://doi.org/10.1016/j.jmarsys.2020.103459, JMS. [D]

de Souza et al. Potential for conversion of thermal energy in electrical energy: Highlighting the Brazilian Ocean Thermal Energy Park and the Inverse Anthropogenic Effect, https://doi.org/10.1016/j.renene.2020.07.050. RenEnergy. [D]

Dias et al. Ocean Heat Storage in Response to Changing Ocean Circulation Processes, https://doi.org/10.1175/JCLI-D-19-1016.1, JCim. [CI]

Diniz et al. Palinomorfos esporopolínicos na plataforma continental interna sul do Rio Grande do Sul, Brasil, https://doi.org/10.4072/rbp.2020.1.03, RBP. [D]

Dotto et al. A novel hydrographic gridded data set for the Northern Antarctic Peninsula, https://doi.org/10.5194/essd-2020-244, ESSDD.  [PD]

Dreujou et al. Holistic Environmental Approaches and Aichi Biodiversity Targets: accomplishments and perspectives for marine ecosystems, https://doi.org/10.7717/peerj.8171, PeerJ. [CI]

Fernandino et al. Anthropoquinas: First description of plastics and other man-made materials in recently formed coastal sedimentary rocks in the southern hemisphere, https://doi.org/10.1016/j.marpolbul.2020.111044, MPB. [CN]

Ferreira et al. Changes in Phytoplankton Communities Along the Northern Antarctic Peninsula: Causes, Impacts and Research Priorities, https://doi.org/10.3389/fmars.2020.576254, FrontiersMS. [CI]

Franco et al. Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review,  https://doi.org/10.1007/s10584-020-02783-6, ClimChan. [CI]

Freitas et al. On ex situ Ophiomorpha and other burrow fragments from the Rio Grande do Sul Coastal Plain, Brazil: paleobiological and taphonomic remarks, https://doi.org/10.1017/jpa.2020.29, J.Paleo. [M]

Gavilanes et al. Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases grain yield of maize hybrids, https://doi.org/10.1016/j.rhisph.2020.100224, Rhizo. [CN]

Guerreiro et al. Effects of chlorothalonil on the antioxidant defense system of mussels Perna perna, https://doi.org/10.1016/j.ecoenv.2019.110119, EcoEnvSaf. [CN]

Gutierrez et al. Is There Something in the Air? Sources, Concentrations and Ionic Composition of Particulate Matter (PM2.5) in an Industrial Coastal City in Southern Brazil, https://doi.org/10.1007/s11270-020-04611-0, WASP. [CN]

Henley et al. Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications, https://doi.org/10.3389/fmars.2020.00581, FrontiersMS. [CI]

Hillebrand et al. Mapping the concentration of sea ice in the central Antarctic Peninsula with Sentinel 1 data, https://doi.org/10.26848/rbgf.v13.3.p1106-1116, RBGF. [CN]

Hillebrand et al. Comparison between Atmospheric Reanalysis Models ERA5 and ERA-Interim at the North Antarctic Peninsula Region, https://doi.org/10.1080/24694452.2020.1807308, AAAG. [CN]

Hoffman et al. Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years, https://doi.org/10.5194/tc-14-881-2020, The Cryosphere. [CI]

Jung et al. Estimating Suspended Sediment Concentrations from River Discharge Data for Reconstructing Gaps of Information of Long-Term Variability Studies, https://doi.org/10.3390/w12092382, Water. [M]

Mirlean et al. Dredging in an estuary causes contamination by fluid mud on a tourist ocean beach. Evidence via REE ratios, https://doi.org/10.1016/j.marpolbul.2020.111495, MPB. [CI]

Monteiro et al. Seasonal variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic Peninsula, https://doi.org/10.1038/s41598-020-71814-0, SciRep. [D]

Monteiro et al. Towards an intensified summer CO2 sink behaviour in the Southern Ocean coastal regions, https://doi.org/10.1016/j.pocean.2020.102267, PiO. [M]

Monteiro et al. Integrated environmental vulnerability to oil spills in sensitive areas, https://doi.org/10.1016/j.envpol.2020.115238, EnvPol. [D]

Muelbert et al. Corrigendum: ILTER – The International Long-Term Ecological Research Network as a Platform for Global Coastal and Ocean Observation, https://doi.org/10.3389/fmars.2019.00819, FrontiersMarSci. [CI]

Pita et al. An assessment of Brazil Current surface velocity and associated transport near 22°S: XBT and altimetry data, https://doi.org/10.1016/j.rsma.2020.101197, RSMS. [CN]

Podartz et al. Disruption of fertility, placenta, pregnancy outcome, and multigenerational inheritance of hepatic steatosis by organotin exposure from contaminated seafood in rats, https://doi.org/10.1016/j.scitotenv.2020.138000, SciTEnv. [CN]

Poersch et al. Assessment of trace metals, total organic carbon and total nitrogen of a shrimp farm system in Southern Brazil, https://doi.org/10.1016/j.rsma.2020.101452, RSMS. [CN]

Quintana et al. Mercury distributions in sediments of an estuary subject to anthropogenic hydrodynamic alterations (Patos Estuary, Southern Brazil), https://doi.org/10.1007/s10661-020-8232-3, EnvMonAss. [D]

Seiler et al. Effect of wind and river discharge on water quality indicators of a coastal lagoon, https://doi.org/10.1016/j.rsma.2020.101513, RSMS. [CN]

Shimitz et al. Modulation of nodularin toxicity in shrimp Litopenaeus vannamei (BOONE, 1931) fed with dietary açai (Euterpe oleracea) inclusion, https://doi.org/10.1016/j.fsi.2020.05.055, FishSFImu. [CN]

Singh et al. Retrieval of Spatial and Temporal Variability in Snowpack Depth over Glaciers in Svalbard Using GPR and Spaceborne POLSAR Measurements, https://doi.org/10.3390/w12010021, Water. [CI]

Soroldoni et al. Antifouling paint particles cause toxicity to benthic organisms: Effects on two species with different feeding modes, https://doi.org/10.1016/j.chemosphere.2019.124610, Chemosphere. [D]

Sopezki et al. The effects of Microcystis aeruginosa cells lysate containing microcystins on physiological and molecular responses in the nematode Caenorhabditis eleganshttps://doi.org/10.1002/tox.22894, EnvTox. [CN]

Spotorno-Oliveira et al. First detection of the non-indigenous gastropod Rapana venosa in the southernmost coast of Brazil, https://doi.org/10.1016/j.csr.2020.104047, CSR. [PD]

Tavora et al. El-Niño Southern Oscillation (ENSO) effects on the variability of Patos Lagoon Suspended Particulate Matter, https://doi.org/10.1016/j.rsma.2020.101495, RSMS. [M]

Trombetta et al. An overview of longshore sediment transport on the Brazilian coast, https://doi.org/10.1016/j.rsma.2020.101099, RSMS. [D]

Valero et al. Potential availability of trace metals in sediments in southeastern and southern Brazilian shipyard areas using the DGT technique and chemical extraction methods, https://doi.org/10.1016/j.scitotenv.2019.136216, SciTotEnv. [M]

Ventura et al. Histological and Behavioral Toxicity of Tributyltin in the Tropical Guppy Poecilia viviparahttps://doi.org/10.1002/etc.4808, EnvToxChe. [CN]

Vieira et al. Links between surface sediment composition, morphometry and hydrodynamics in a large shallow coastal lagoon, https://doi.org/10.1016/j.sedgeo.2020.105591, SedGeol. [CN]

Weidemann et al. Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions, https://doi.org/10.3390/geosciences10070272, Geosciences. [CI]

Werlang et al. Toxigenic phytoplankton groups and neurotoxin levels related to two contrasting environmental conditions at the coastal area of Rio de Janeiro (west of South Atlantic), https://doi.org/10.1016/j.toxicon.2020.06.016, Toxicon. [M]

Werner et al. Morphological, ecological and toxicological aspects of Raphidiopsis raciborskii (Cyanobacteria) in a eutrophic urban subtropical lake in southern Brazil, https://doi.org/10.21826/2446-82312020v75e2020018, ISB. [CN]

 

2019

Agostini et al. Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling, https://doi.org/10.1007/s11356-019-05744-4, EnvSciPolRes. [PD]

Agostini et al. Surface coatings select their micro and macrofouling communities differently on steel, https://doi.org/10.1016/j.envpol.2019.113086, EnvPol. [PD]

Agostini et al. Non-toxic antifouling potential of Caatinga plant extracts: effective inhibition of marine initial biofouling, https://doi.org/10.1007/s10750-019-04071-6, Hidrobiologia. [PD]

Artifon et al. Aquatic organic matter: Classification and interaction with organic microcontaminants, https://doi.org/10.1016/j.scitotenv.2018.08.385, SciTEnv. [CN]

Baeyens et al. Arsenic enrichment in sediments and beaches of Brazilian coastal waters: A review, https://doi.org/10.1016/j.scitotenv.2019.05.126, SciTotEnv. [CI]

Barbat et al. An adaptive machine learning approach to improve automatic iceberg detection from SAR images, https://doi.org/10.1016/j.isprsjprs.2019.08.015, ISPRS. [D]

Barbat et al. Three Years of Near‐Coastal Antarctic Iceberg Distribution From a Machine Learning Approach Applied to SAR Imagery, https://doi.org/10.1029/2019JC015205, JGR-Oceans. [D]

Bif et al. Microplankton Community Composition Associated With Toxic Trichodesmium Aggregations in the Southwest Atlantic Ocean, https://doi.org/10.3389/fmars.2019.00023, FrontierMarSci. [M]

Bordin et al. Nutrient and carbon dynamics under the water mass seasonality on the continental shelf at the South Brazil Bight, https://doi.org/10.1016/j.jmarsys.2018.09.006, JMS. [CN]

Carvalho et al. The impact of mesoscale eddies on the phytoplankton community in the South Atlantic Ocean: HPLC-CHEMTAX approach, https://doi.org/10.1016/j.marenvres.2018.12.003, MER. [D]

Costa et al. Domoic acid in the tropical South Atlantic Ocean – An environment case study, https://doi.org/10.1016/j.toxicon.2019.05.009, Toxicon. [PD]

deYoung et al. An Integrated All-Atlantic Ocean Observing System in 2030, https://doi.org/10.3389/fmars.2019.00428, FrontiersMarSci. [CI]

Duque-Castaño et al. Morphometric analysis in the shells of the planktonic foraminifera Orbulina universa: a source for paleoceanographic information?, https://doi.org/10.1590/s1679-87592019025206701, BJO. [M]

Forgiarini et al. Quantifying the geomorphologic and urbanization influence on coastal retreat under sea level rise, https://doi.org/10.1016/j.ecss.2019.106437, ECSS. [M]

Francischini et al. On the presence of Ichniotherium in the Coconino Sandstone (Cisuralian) of the Grand Canyon and remarks on the occupation of deserts by non-amniote tetrapods, https://doi.org/10.1007/s12542-019-00450-5, PalZ. [CN] [CI]

Franzen et al. Influence of wind events on the transport of early stages of Micropogonias furnieri (Desmarest, 1823) to a subtropical estuary, 10.3856/vol47-issue3-fulltext-15, IJAR. [M]

Goes et al. Long‐Term Monitoring of the Brazil Current Transport at 22°S From XBT and Altimetry Data: Seasonal, Interannual, and Extreme Variability, https://doi.org/10.1029/2018JC014809, JGR-Oceans. [CI]

Gomes et al. Ice dynamics of union glacier from SAR offset tracking, https://doi.org/10.1016/j.gloplacha.2018.12.012, GPC. [M]

Goni et al. More Than 50 Years of Successful Continuous Temperature Section Measurements by the Global Expendable Bathythermograph Network, Its Integrability, Societal Benefits, and Future, https://doi.org/10.3389/fmars.2019.00452, FrontiersMarSci. [CI]

Hashimoto & Mata. Polínias costeiras da Antártica através de uma reanálise oceânica de alta resolução, Geociências. [M]

Leal et al. Numerical study of oil spill in the Patos Lagoon estuary region, http://dx.doi.org/10.5380/reterm.v18i1.67026, RET. [CN]

Lemos et al. A comparative analysis between variations in wet snow zone and the main break-up and disintegration events in WILKINS ice shelf, Antarctic peninsula, https://doi.org/10.1016/j.gloplacha.2019.03.009, GPC. [M]

Lopes et al. Impacts of the biocide chlorothalonil on biomarkers of oxidative stress, genotoxicity, and sperm quality in guppy Poecilia viviparahttps://doi.org/10.1016/j.ecoenv.2019.109847, EcoEnvSaf. [CN]

Martelo et al. Impacts of dredging on the hydromorphodynamics of the Patos Lagoon estuary, southern Brazil,  https://doi.org/10.1016/j.oceaneng.2019.106325, OceEng. [M]

Martins et al. Microcystin – LR exposure causes cardiorespiratory impairments and tissue oxidative damage in trahira, Hoplias malabaricushttps://doi.org/10.1016/j.ecoenv.2019.02.053, EcoEnvSaf. [CN] [CI]

Monteiro et al. Reproducibility of a Real Case of an Oil Spill during Vessel Supply Operation in an Estuarine Zone,  https://doi.org/10.4028/www.scientific.net/DDF.396.121, DFF. [D]

Monteiro et al. Oil Spill Simulations and Susceptibility in Coastal and Estuarine Areas, https://doi.org/10.4028/www.scientific.net/DDF.396.109, DDF. [D]

Muelbert et al. ILTER – The International Long-Term Ecological Research Network as a Platform for Global Coastal and Ocean Observation, https://doi.org/10.3389/fmars.2019.00527, FrontiersMarSci. [CI]

Nela et al. Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique, https://doi.org/10.3390/w11122466, Water. [CI]

Netto et al. Open-source Automatic Weather Station and Electronic Ablation Station for measuring the impacts of climate change on glaciers, https://doi.org/10.1016/j.ohx.2019.e00053, HardwareX. [D]

Oliveira et al. Relationships between Wind Effect, Hydrodynamics and Water Level in the World’s Largest Coastal Lagoonal System, https://doi.org/10.3390/w11112209, Water. [M]

Orselli et al. The sea-air CO2 net fluxes in the South Atlantic Ocean and the role played by Agulhas eddies, https://doi.org/10.1016/j.pocean.2018.10.006, PiO. [D]

Orselli et al. The Effect of Agulhas Eddies on Absorption and Transport of Anthropogenic Carbon in the South Atlantic Ocean, https://doi.org/10.3390/cli7060084, Climate. [D]

Quintana et al. Record of Hg pollution around outset of colonization in Southern Brazil, https://doi.org/10.1007/s10661-019-7404-5, EnvMonAss. [D]

Salvador & Muelbert. Environmental Variability and Body Condition of Argentine Menhaden Larvae, Brevoortia pectinata (Jenyns, 1842), in Estuarine and Coastal Waters, https://doi.org/10.1007/s12237-019-00604-3, E&C. [CN]

Schimdt et al. Future Ocean Observations to Connect Climate, Fisheries and Marine Ecosystems, https://doi.org/10.3389/fmars.2019.00550, FrontiersMarSci. [CI]

Silva et al. Geomorphological Characterization of Antarctic Peninsula Glaciershttp://dx.doi.org/10.20502/rbg.v20i3.1547, RBGeo. [D]

Silva et al. Spatial and temporal analysis of changes in the glaciers of the Antarctic Peninsula, https://doi.org/10.1016/j.gloplacha.2019.103079, GPC. [D]

Silva et al. Estudo Numérico de Derrames de Óleo com Condições de Enchente na Região do Super Porto de Rio Grande - RS, https://doi.org/10.26512/ripe.v5i1.18763, RIPE. [CN]

Silva-Barni et al. Passive sampling of pesticides and polychlorinated biphenyls along the Quequén Grande River watershed, Argentina, https://doi.org/10.1002/etc.4325, EnvToxChe. [CI]

Tâmega et al. Palaeoenvironmental dynamics of Holocene shoreface bryoliths from the southern coast of Brazil, https://doi.org/10.1177/0959683618824739, The Holocene. [PD]

Tanhua et al. Ocean FAIR Data Services, https://doi.org/10.3389/fmars.2019.00440, FrontiersMarSci. [CI]

They et al. High bacterial activity in nutrient rich saltwater: Evidence from the uncoupling between salinity and nutrients in the Patos Lagoon estuary, https://doi.org/10.1016/j.ecss.2018.09.001, ECSS. [CN]

Tavora et al. The influence of river discharge and wind on Patos Lagoon, Brazil, Suspended Particulate Matter, https://doi.org/10.1080/01431161.2019.1569279, IJRS. [M]

 

2018

Almeida et al. Impact of the new equation of state of seawater (TEOS-10) on the estimates of water mass mixture and meridional transport in the Atlantic Ocean, https://doi.org/10.1016/j.pocean.2018.02.008, PiO. [M]

Andrade et al. Geoambientes da Península Potter, Ilha Rei George, Antártica Marítima, https://doi.org/10.22456/1807-9806.88683, PesqGeo. [CN]

Batista-Andrade et al. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama, https://doi.org/10.1016/j.envpol.2017.11.063, EnvPol. [CN]

Barllet et al. On the temporal variability of intermediate and deep waters in the Western Basin of the Bransfield Strait, https://doi.org/10.1016/j.dsr2.2017.12.010, DSR-2. [CI]

Barreto et al. Induction of oxidative stress by chlorothalonil in the estuarine polychaete Laeonereis acutahttps://doi.org/10.1016/j.aquatox.2017.12.004, AquTox. [CN]

Becker et al. Mesozooplankton distribution, especially copepods, according to water masses dynamics in the upper layer of the Southwestern Atlantic shelf (26°S to 29°S), https://doi.org/10.1016/j.csr.2018.06.011, CSR. [CN]

Caldas et al. Antifouling booster biocide extraction from marine sediments: a fast and simple method based on vortex-assisted matrix solid-phase extraction, https://doi.org/10.1007/s11356-017-0942-x, EnvSciPolRes. [CN]

Carvalho-Borges et al. Seawater acidification and anthropogenic carbon distribution on the continental shelf and slope of the western South Atlantic Ocean, https://doi.org/10.1016/j.jmarsys.2018.06.008, JMS. [M]

Castro et al. TBT is still a matter of concern in Peru, https://doi.org/10.1016/j.chemosphere.2018.04.097, Chemosphere. [CI]

Collares et al. Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica, https://doi.org/10.1016/j.dsr2.2018.02.014, DSR-II. [M]

Costa et al. Efficiently enforcing artisanal fisheries to protect estuarine biodiversity, https://doi.org/10.1002/eap.1744, EcoApp. [CI]

Costi et al. Water level variability of the Mirim - São Gonçalo system, a large, subtropical, semi-enclosed coastal complex, https://doi.org/10.1016/j.advwatres.2018.05.008, AdWR. [CN]

Costi et al. Estimating surface melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data,  https://doi.org/10.1017/S0954102018000391, AntSci. [CN] [CI]

da Cunha et al. Contrasting end-summer distribution of organic carbon along the Gerlache Strait, Northern Antarctic Peninsula: Bio-physical interactions, https://doi.org/10.1016/j.dsr2.2018.03.003, DSR-II. [CN]

de Figueiredo et al. Modelling the effects of sea-level rise and sediment budget in coastal retreat at Hermenegildo Beach, Southern Brazil, https://doi.org/10.1590/s1679-87592018009806602, BJO.  [PD]

de Souza et al. On the influence of Subtropical Mode Water on the South Atlantic Ocean, https://doi.org/10.1016/j.jmarsys.2018.04.006, JMS. [M]

de Souza et al. Environmental Variability and Cyanobacterial Blooms in a Subtropical Coastal Lagoon: Searching for a Sign of Climate Change Effects, https://doi.org/10.3389/fmicb.2018.01727, FrontiersMarSci. [PD]

Ferreira et al. Bio-optical characterization of the northern Antarctic Peninsula waters: Absorption budget and insights on particulate backscattering, https://doi.org/10.1016/j.dsr2.2017.09.007, DSR-II. [D]

Fonseca et al. Effect of a toxic Microcystis aeruginosa lysate on the mRNA expression of proto-oncogenes and tumor suppressor genes in zebrafish, https://doi.org/10.1016/j.ecoenv.2018.06.007, EcoEnvsaf. [CN]

Francischini et al. A fresh look at ancient dungs: the Brazilian Triassic coprolites revisited, https://doi.org/10.1111/let.12251, Lethaia. [CN]

Francischini et al. A MIDDLE PERMIAN (ROADIAN) LUNGFISH AESTIVATION BURROW FROM THE RIO DO RASTO FORMATION (PARANÁ BASIN, BRAZIL) AND ASSOCIATED U-Pb DATING, https://doi.org/10.2110/palo.2017.050, Palaios. [CN]

Francischini et al. Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin),https://doi.org/10.7717/peerj.4764, PeerJ. [CN] [CI]

Ito et al. Sea-air CO2 fluxes and pCO2 variability in the Northern Antarctic Peninsula during three summer periods (2008–2010), https://doi.org/10.1016/j.dsr2.2017.09.004, DSR-II. [CN]

Kerr et al. Northern Antarctic Peninsula: a marine climate hotspot of rapid changes on ecosystems and ocean dynamics, https://doi.org/10.1016/j.dsr2.2018.05.006, DSR-II. [CN]

Kerr et al. Three decades of deep water mass investigation in the Weddell Sea (1984–2014): Temporal variability and changes, https://doi.org/10.1016/j.dsr2.2017.12.002, DSR-II. [CI]

Kerr et al. Carbonate system properties in the Gerlache Strait, Northern Antarctic Peninsula (February 2015): I. Sea–Air CO2 fluxes, https://doi.org/10.1016/j.dsr2.2017.02.008, DSR-II. [CI]

Kerr et al. Carbonate system properties in the Gerlache Strait, Northern Antarctic Peninsula (February 2015): II. Anthropogenic CO2 and seawater acidification, https://doi.org/10.1016/j.dsr2.2017.07.007, DSR-II. [CI]

Lencina-Avila et al. Past and future evolution of the marine carbonate system in a coastal zone of the Northern Antarctic Peninsula, https://doi.org/10.1016/j.dsr2.2017.10.018, DSR-II.  [CI]

Lopes et al. Study of oil leakage scenarios in the Porto of Rio Grande - RS and its environmental impacts, https://doi.org/10.26848/rbgf.v11.07.p2229-2243, RBGF. [CN]

Maciel et al. Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast, https://doi.org/10.1016/j.marpolbul.2017.11.061, MPB. [CN]

Marchetti et al. Tetrapod ichnotaxonomy in eolian paleoenvironments (Coconino and De Chelly formations, Arizona) and late Cisuralian (Permian) sauropsid radiation, https://doi.org/10.1016/j.earscirev.2018.12.011, EartSciRev. [CI]

Martins et al. Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems, https://doi.org/10.1080/08927014.2017.1404036, Biofuling. [CI]

Mata et al. 15 years sailing with the Brazilian High Latitude Oceanography Group (GOAL), https://doi.org/10.1016/j.dsr2.2018.05.007, DSR-II. [CN]

Mendes et al. Impact of sea ice on the structure of phytoplankton communities in the northern Antarctic Peninsula, https://doi.org/10.1016/j.dsr2.2017.12.003, DSR-II. [CN]

Mendes et al. New insights on the dominance of cryptophytes in Antarctic coastal waters: A case study in Gerlache Strait, https://doi.org/10.1016/j.dsr2.2017.02.010, DSR-II. [CN]

Olsen et al. The Role of Local Geomorphology Influencing Coastal Response to Sea Level Rise, https://doi.org/10.2112/SI85-063.1, JCR. [M]

Orselli et al.  How fast is the Patagonian shelf-break acidifying?, https://doi.org/10.1016/j.jmarsys.2017.10.007, JMS. [M]

Pereira et al. Nickel, vanadium, and lead as indicators of sediment contamination of marina, refinery, and shipyard areas, https://doi.org/10.1007/s11356-017-0503-3, EnvSciPolRes. [M]

Pereira & Garcia. Evaluation of satellite-derived MODIS chlorophyll algorithms in the northern Antarctic Peninsula, https://doi.org/10.1016/j.dsr2.2017.12.018, DSR-II. [M]

Perreti et al. Ocean acidification studies and the uncertainties relevance on measurements of marine carbonate system properties, https://doi.org/10.1590/s1679-87592018000706602, BJO. [CN]

Pinheiro et al. Evaluation of intracoelomic tagging of tainha, Mugil liza (Valenciennes, 1836), under laboratory conditions, https://doi.org/10.1007/s10750-018-3527-x, Hidrobiologia. [CN]

Ramos et al. Cytoprotection of lipoic acid against toxicity induced by saxitoxin in hippocampal cell line HT-22 through in silico modeling and in vitro assays, https://doi.org/10.1016/j.tox.2017.11.004, Toxicology. [CN]

Rauert et al. Atmospheric Concentrations of New Persistent Organic Pollutants and Emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC) Region, https://doi.org/10.1021/acs.est.8b00995, EnvSciThec. [CI]

Ribeiro et al. An Assessment of the XBT Fall-Rate Equation in the Southern Ocean, https://doi.org/10.1175/JTECH-D-17-0086.1, JAOT. [M]

Rodrigues et al. Physicochemical analysis of Permian coprolites from Brazil, https://doi.org/10.1016/j.saa.2017.08.011, SpecActaA. [CN]

Rossato et al. Size, season and origin of gastropods matter in imposex assessments, https://doi.org/10.1016/j.ecoenv.2018.05.013, EcoEnvsaf. [D]

Russo et al. Spatial variability of photophysiology and primary production rates of the phytoplankton communities across the western Antarctic Peninsula in late summer 2013, https://doi.org/10.1016/j.dsr2.2017.09.021, DSR-II. [D]

Santos-Silva et al. Background levels of trace elements in brown and red seaweeds from Trindade, a remote island in South Atlantic Ocean, https://doi.org/10.1016/j.marpolbul.2018.08.019, MPB. [M]

Soroldoni et al. Antifouling paint particles: Sources, occurrence, composition and dynamics, https://doi.org/10.1016/j.watres.2018.02.064, WaterRes. [D]

Soroldoni et al. Potential ecotoxicity of metals leached from antifouling paint particles under different salinities, https://doi.org/10.1016/j.ecoenv.2017.10.060, EcoEnvSaf. [D]

Sopezki et al. Validation of Housekeeping Genes as Internal Controls for the Study of the Effects of Microcystin-LR in Zebrafish by Real-Time PCR, https://doi.org/10.1089/zeb.2018.1598, Zebrafish. [CN]

van Caspel et al. On the ventilation of Bransfield Strait deep basins, https://doi.org/10.1016/j.dsr2.2017.09.006, DSR-2. [CI]

Weidemann et al. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling, https://doi.org/10.3389/feart.2018.00081, Frontiers Eart Sci. [CI]

Zavialov et al. High resolution LiDAR measurements reveal fine internal structure and variability of sediment-carrying coastal plume, https://doi.org/10.1016/j.ecss.2018.01.008, ECSS. [CI]

 

2017

Aguiar et al. On deep convection events and Antarctic Bottom Water formation in ocean reanalysis products, https://doi.org/10.5194/os-13-851-2017, Ocean Science. [M]

Araujo et al. Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along 30°S in the subtropical South Atlantic Ocean, https://doi.org/10.1016/j.dsr.2016.12.004, DSR-I. [CI]

Bif & Yunes. Distribution of the marine cyanobacteria Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean, https://doi.org/10.3354/ame01810, AME. [M]

Brum et al. Energetics of the Brazil Current in the Rio Grande Cone region, https://doi.org/10.1016/j.dsr.2017.08.014, DSR-1. [M]

Costi et al. Estimating surface velocities in the continental shelf using the maximum cross-correlation method, Engenharia Térmica. [CN]

Costi et al. An Automated Structure for Acquiring and Processing Sentinel-1 Data and its Applicability for Coastal Studies, https://doi.org/10.4028/www.scientific.net/DDF.372.122, DDF. [CN]

de Freitas et al. A multiscale subpixel mixture analysis applied for melt detection using passive microwave and radar scatterometer image time series of the Antarctic Peninsula (1999–2009),  https://doi.org/10.1017/aog.2017.44, AnnGla. [CN]

Dentzien-Dias et al. Paleoecological and taphonomical aspects of the Late Miocene vertebrate coprolites (Urumaco Formation) of Venezuela, https://doi.org/10.1016/j.palaeo.2017.11.048, PPP. [CI]

Ferreira & Kerr. Source water distribution and quantification of North Atlantic Deep Water and Antarctic Bottom Water in the Atlantic Ocean, https://doi.org/10.1016/j.pocean.2017.04.003, PiO. [M]

Francischini et al. The Presence of Ankylosaur Tracks in the Guará Formation (Brazil) and Remarks on the Spatial and Temporal Distribution of Late Jurassic Dinosaurs, https://doi.org/10.1080/10420940.2017.1337573, Ichnos. [CN]

Guimarães et al. Growth Characteristics of an Estuarine Heterocystous Cyanobacterium, https://doi.org/10.3389/fmicb.2017.01132, FrontiersMicro. [D]

Ivar do Sul et al. Occurrence and characteristics of microplastics on insular beaches in the Western Tropical Atlantic Ocean, https://doi.org/10.7287/peerj.preprints.2901v1, PeerJ. [PD]

Lanari et al. Dynamics of estuarine drift macroalgae: growth cycles and contributions to sediments in shallow areas, https://doi.org/10.3354/meps12116, MEPS. [CN] [CI]

Lemes & Yunes. Microcystin Biodegradation Study Using a Lagoa Dos Patos Estuary Sediment in Southern of Brasil and a Comparative Analysis of Biodegradation with Isolated Bacteria, 10.12691/ijebb-5-2-2, IJEBB. [CN]

Magalhães et al. Energetics of eddy‐mean flow interactions in the Brazil current between 20°S and 36°S, https://doi.org/10.1002/2016JC012609, JGR-Oceans. [D]

Marreto et al. Trophic quality of waters in the Patos Lagoon estuary: a comparison between its margins and the port channel located in Rio Grande, RS, Brazil, http://dx.doi.org/10.1590/s2179-975x10716, ActaLB. [M]

Martins et al. Microcystin-LR leads to oxidative damage and alterations in antioxidant defense system in liver and gills of Brycon amazonicus (SPIX & AGASSIZ, 1829), https://doi.org/10.1016/j.toxicon.2017.10.006, Toxicon. [CN]

Mattos et al. Butyltin contamination in Northern Chilean coast: Is there a potential risk for consumers?, https://doi.org/10.1016/j.scitotenv.2017.03.264, SciTotEnv. [CI]

Mendonça et al. Regional modeling of the water masses and circulation annual variability at the Southern Brazilian Continental Shelf, https://doi.org/10.1002/2016JC011780, JGR-Oceans. [CN]

Miotto et al. Ecophysiological characterization and toxin profile of two strains of Cylindrospermopsis raciborskii isolated from a subtropical lagoon in Southern Brazil, https://doi.org/10.1007/s10750-017-3243-y, Hidrobiologia. [CN]

Moreira et al. Effects of harbor activities on sediment quality in a semi-arid region in Brazil, https://doi.org/10.1016/j.ecoenv.2016.09.020, EcoEnvsaf. [CN]

Odebrecht et al. Biota of the Patos Lagoon estuary and adjacent marine coast: long-term changes induced by natural and human-related factors, https://doi.org/10.1080/17451000.2016.1258714, MBR. [CN]

Pauliv et al. The first Western Gondwanan species of Triodus Jordan 1849: A new Xenacanthiformes (Chondrichthyes) from the late Paleozoic of Southern Brazil, https://doi.org/10.1016/j.jsames.2017.09.007, JSAES. [CN]

Pieroni et al. Retardantes de chama bromados: uma revisão, http://dx.doi.org/10.21577/0100-4042.20160176, Química Nova. [CN]

Silveira & Leonhatdt. Morphotypes of the Coccolithophore Gephyrocapsa as a proxy for sea surface temperature, https://doi: 10.4072/rbp.2016.3.02, RevBrasPal. [M]

Soroldoni et al. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?, https://doi.org/10.1016/j.jhazmat.2017.02.001, JHM. [M]

Vieira et al. A comparative approach using biomarkers in feral and caged Neotropical fish: Implications for biomonitoring freshwater ecosystems in agricultural areas, https://doi.org/10.1016/j.scitotenv.2017.02.026, SciTotEnv. [CN]

Yunes et al. Effect of nutrient balance and physical factors on blooms of toxic cyanobacteria in the Patos Lagoon, southern Brazil, https://doi.org/10.1080/03680770.1995.11901048, IVTAL. [CN]

 

2016

Almeida et al. The effectiveness of conventional water treatment in removing Ceratium furcoides (Levander) Langhans, Microcystis sp. and microcystins, https://doi.org/10.4314/wsa.v42i4.11, WaterSA. [CN]

Angel-Benavides et al. Influência de vórtices na concentração de clorofila da confluência Brasil-Malvinas: Mecanismos inferidos por sensoriamento remoto, BJAST. [M]

Artifon et al. Spatiotemporal appraisal of TBT contamination and imposex along a tropical bay (Todos os Santos Bay, Brazil), https://doi.org/10.1007/s11356-016-6745-7, EnvSciPolRes. [CN]

Batista et al. Imposex and butyltin contamination still evident in Chile after TBT global ban, https://doi.org/10.1016/j.scitotenv.2016.05.039, SciTotEnv. [CN]

Batista-Andrade et al. Antifouling booster biocides in coastal waters of Panama: First appraisal in one of the busiest shipping zones, https://doi.org/10.1016/j.marpolbul.2016.07.045, MPB. [CN]

Chivitz et al. Responses of the CYP1A biomarker in Jenynsia multidentata and Phalloceros caudimaculatus and evaluation of a CYP1A refractory phenotype, https://doi.org/10.1016/j.chemosphere.2015.08.050, Chemosphere. [CN]

Costa et al. Variability of labile metals in estuarine sediments in areas under the influence of antifouling paints, southern Brazil, https://doi.org/10.1007/s12665-016-5355-5, EnvEartSci. [D]

Costa & Muelbert. Long-term assessment of temporal variability in spatial patterns of early life stages of fishes to facilitate estuarine conservation, https://doi.org/10.1080/17451000.2016.1213397, MBR. [CN]

de Figueiredo & Cowell. Sensitivity of shoreline-recession forecasts to sediment budget uncertainties, https://doi.org/10.2112/SI75-190.1, JCR. [PD]

Del Brio et al. Distribution and bioaccumulation of butyltins in the edible gastropod Odontocymbiola magellanica, https://doi.org/10.1080/17451000.2016.1169296, MarBioRes. [CI]

Dentzien-Dias et al. A new actinomycete from a Guadalupian vertebrate coprolite from Brazil, https://doi.org/10.1080/08912963.2016.1241247, HistBio. [CI]

Detoni et al. Toxic Trichodesmium bloom occurrence in the southwestern South Atlantic Ocean, https://doi.org/10.1016/j.toxicon.2015.12.003, Toxicon. [CN]

Detoni et al. Trichodesmium latitudinal distribution on the shelf break in the southwestern Atlantic Ocean during spring and autumn, https://doi.org/10.1002/2016GB005431, GBC. [CN]

Diehl et al. Behavioral alterations induced by repeated saxitoxin exposure in drinking water, https://doi.org/10.1186/s40409-016-0072-9, JVAT. [PD]

Dotto et al. Multidecadal freshening and lightening in the deep waters of the Bransfield Strait, Antarctica, https://doi.org/10.1002/2015JC011228, JGR-Oceans. [M]

Fontoura et al. Aspects of fish conservation in the upper Patos Lagoon basin,  https://doi.org/10.1111/jfb.13005, FishBiol. [CN]

Gonçalves & Leonhardt. Contribuição dos cocolitoforídeos para o aporte de carbonato de cálcio durante o Último Máximo Glacial na Margem Continental Sul Brasileira, https://revistas.ufpr.br/abequa/article/view/45705, QuaEnvGeo. [M]

Gonçalves-Araujo et al. Seasonal change of phytoplankton (spring vs. summer) in the southern Patagonian shelf, https://doi.org/10.1016/j.csr.2016.03.023, CSR. [CN]

Ito et al. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011, https://doi.org/10.1016/j.csr.2016.03.013, CSR. [CN]

Kerr et al. The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives, https://doi.org/10.1007/s00267-015-0630-x, EnvMan. [CN]

Laitano et al. Different carbon sources affect PCB accumulation by marine bivalves, https://doi.org/10.1016/j.marenvres.2015.11.004, MER. [CI]

Lencina-Avila et al. Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean, https://doi.org/10.1016/j.dsr.2016.06.004, DSR-I. [M]

Lima et al. An assessment of the Brazil Current baroclinic structure and variability near 22° S in Distinct Ocean Forecasting and Analysis Systems, https://doi.org/10.1007/s10236-016-0959-6, OceDyn. [CN] [CI]

Machado & Calliari. Synoptic Systems Generators of Extreme Wind in Southern Brazil: Atmospheric Conditions and Consequences in the Coastal Zone, https://doi.org/10.2112/SI75-237.1, JCR. [D]

Magalhães et al. Effect of the North Equatorial Counter Current on the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations), https://doi.org/10.5194/os-12-243-2016, Ocean Science. [CI]

Maia et al. Analytical model of sea level elevation during a storm: Support for coastal flood risk assessment associated with cyclone passage, https://doi.org/10.1016/j.csr.2016.04.012, CSR. [M]

Marson et al. Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of NCAR-CCSM3, https://doi.org/10.1007/s00382-015-2876-7, ClimDyn. [CN] [CI]

Martinelli et al. The oldest archosauromorph from South America: postcranial remains from the Guadalupian (mid-Permian) Rio do Rasto Formation (Paraná Basin), southern Brazil, https://doi.org/10.1080/08912963.2015.1125897, HistBio. [CN]

Pacheco et al. Identification of the Toxic Pentapeptide Nodularin in a Cyanobacterial Bloom in a Shrimp Farm in South American Atlantic Coast, 10.4172/2153-2435.1000479, PharAnAct. [D]

Pinho et al. Copper accumulation by stickleback nests containing spiggin, https://doi.org/10.1007/s11356-016-6784-0, EnvSciPolRes. [CI]

Rauert et al. Towards a regional passive air sampling network and strategy for new POPs in the GRULAC region: Perspectives from the GAPS Network and first results for organophosphorus flame retardants, https://doi.org/10.1016/j.scitotenv.2016.06.229, SciTotEnv. [CI]

Rossato et al. Sex steroid imbalances in the muricid Stramonita haemastoma from TBT contaminated sites, https://doi.org/10.1007/s11356-015-5942-0, EnvSciTotEnv. [D]

Santos et al. Influence of Antarctic Intermediate Water on the deoxygenation of the Atlantic Ocean, https://doi.org/10.1016/j.dynatmoce.2016.09.002, DAO. [M]

Sallee et al. State of the Climate in 2015, https://doi.org/10.1175/2016BAMSStateoftheClimate.1, BAMS. [CI]

Vieira et al. Multiple biomarker responses in Prochilodus lineatus subjected to short-term in situ exposure to streams from agricultural areas in Southern Brazil, https://doi.org/10.1016/j.scitotenv.2015.10.071, SciTotEnv. [CN]

Wallner-Kersanach et al. Temporal evolution of the contamination in the southern area of the Patos Lagoon estuary, RS, Brazil, 10.5894/rgci596, RGCI. [CN]

Wesshenfelder et al. The control of palaeo-topography in the preservation of shallow gas accumulation: Examples from Brazil, Argentina and South Africa, https://doi.org/10.1016/j.ecss.2016.02.005, ECSS. [CN] [CI]